UDC 539, 3
BQUATIONS OF BIFURCATION OF EQUILIBRIUM OF AN ELASTIC ISOTROPIC
BODY IN TERMS OF RATES OF CHANGE OF LAGRANGEAN COORDINATES

PMM Vol, 38, N¢4, 1974, pp.693-702
L.I.,BALABUKH and M, G,IAKOVENKO
(Moscow)

(Received March 2, 1973)

A new version of constructing the three-dimensional theory of elastic stability is
advanced, Bifurcation is considered to be an interchange of material particles at
a fixed point in space, As a kinematic variable we take the rate of change of
Lagrangean particle coordinates, On the basis of obtained exact solutions, an ap -
proximate method is developed, valid in the case of small precritical deformations
and rotations,

Whenever the usual Lagrangean presentation is used for the motion of a conti-
nuous medium [1, 2], the equations which determine the changes in the stress ten-
sor necessarily contain the rotations of material particles, As a result, the linear-
ized deformation equations of equilibrium in the general case contain the sought
critical stresses [1], Itis of interest to study that version of a boundary value stability
problem for which the parameters enter essentially only into the boundary conditions,
One of these versions was suggested by Leibenzon[3], and then independently by
Ishlinskii [4], However, it cannot be obtained using the Lagrangean presentation
while linearizing the original equations of the nonlinear theory of elasticity,

In the present paper, nonlinear equations of the theory of elasticity in Eulerian
representation are obtained using as a kinematic variable the rates of change in
Lagrangean coordinates, On the basis of these equations, bifurcation of equilibri-
um of an isotropic elastic body is corsidered, The advantage of the suggested ver-
sion is that the changes in the Cauchy stress tensor are related only to the defor-
mation tensor of introduced velocities, Therefore, the differential equations of
equilibrium contain only those parameters of the prebifurcation state which are
related to the change in physical properties of the body during deformation, The
components of the rotation tensor of these velocities enter only into the boundary
conditions in connection with the change of shape of the body at the instant of
bifurcation, The parameters which enter as factors of the components of the rota-
tion tensor in the boundary conditions are the most essential part of parameters of
the precritical state which enter into the structure of the obtained boundary value
problem for neutral equilibrium,

For an isotropic elastic body which is only slightly deformed in the precritical
state, the indicated circumstance permits to suggest a simple approximate version
of the equations of neutral equilibrium in which the sought parameter of the cri-
tical loading enters only into the boundary conditions, If the physical content of
the sought functions which enter the differential equations and the boundary con-
ditions is moved into the background, then it appears that the approximate version
of the boundary value problem is close to the one used by Leibenzon,
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1, We consider the slow motion of a deformable body in the case when the inertia
forces can be disregarded, We use Cartesian coordinates with respect to the motionless
space, The Lagrangean coordinates of the particles are defined by the coordinates (4,,
ay, a3) of their positions in the space in the initial unstressed state of the body, In a
current state, at an arbitrary instant, a fixed particle is to be found at the point of coor-
dinates x; = x; (ay, @y, a3, £), i = 1,2,3. Then the equations @a; = a; (24, &,
Z3,f)determine that particle which at the given instant is at the point (%4, ,, Zg). For
this point we introduce the quantity v* = — da; / 0, which will be called the rate
of change of the Lagrangean coordinates, Its connection with the velocity v; of the
material particle is established with the aid of the identity
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In the sequel we will assume that v;* = v;* (a;, a,, @3, ). The above introduced
rate of change of the Lagrangean coordinates allows us to investigate processes at a fixed
point in space,

We consider the rate of change of the density p of the medium at a current state, con-
nected with the medium density p° at the initial state by the relation p / p° = det
| da, / 8z,, ||. Differentiating this expression with respect to time for z; = const,
we obtain

()= () = — A = g T S )
at \ p° Boot\ ox s ox ¥ 9w da, p° Oa,

Here A is the cofactor of the element da; / 0z, in the matrix | da, / 8z, |. If the
medium density at the initial state is p° = coust, then the following form of the con-
tinuity equation holds: 9

3 v
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As a measure of the deformation in the Euler representation of the motion, it is con-
venient to use the second Cauchy measure [6] ¢;; = (da,, / dx;) (da,, / Ox;), connec-
ted with the Almansi strain tensor €;; by the relation ¢;;= §;;— 2¢,;, or the second
Finger measure f;; = (x;/0a.,) (02; / 8an). The tensors €;; and f;; are inverses
of each other, We obtain the rate of change of these tensors at a fixed point of the space,
First we compute
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Differentiating the relation ¢;,fm; = ij» we get
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The tensor e%,, , introduced here, will be called the deformation tensor of the rate of
change of the Lagrangean coordinates, We introduce also the rotation tensor of the velo-

cities v;* . 1 <0vn* 8vm*>

0am_ da

n

2, At an arbitrary instant, in the absence of body forces, we have, in the Eulerian
representation, the following equilibrium equations inside the body and the boundary
conditions at that part of the surface where the exterior forces are given:

acrij/axi 20, n,0;; :Fj (2.1)
Correspondingly, in the Lagrangean representation
o FdsS ( o 0z, )
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Here ©;; is the Cauchy stress tensor, 7;; is the Piola stress tensor these tensors are
related through the equation given between the parentheses [6]), F; is the vector ofthe
surface load corresponding to the area of the boundary surface in the current state, dS
and dS° are the elements of area on the boundary surfaces in the current and initial
states, respectively, while »; and n;° are the vectors of the unit normal to the boundary
surface in the current and initial states, respectively, and [6]

oaam o Jgso°
dsS

ox;
i

n; = nn, F‘T (2.3)

For a fixed point of the space the equilibrium equations expressed in the rates of change

of the stress tensor [7)]
i(aii —0 (2.4)
dr; \ ot

The boundary conditions have to be related to a fixed material particle, Therefore, at
an arbitrary instant we must have

dn, ds;  dF,
—t5. R R |
ar %t Mg =g

Computing the derivative dn; / dt by differentiating (2,8) for @; = const, we obtain
the stress boundary conditions in terms of the rate of change of the stress tensor
as,; 05, ov, ov d

T, axm azm

The geometric boundary conditions are determined by the assignment of the velocities
;.

3. It will be necessary to obtain the Cauchy and Piola stress tensors in terms of the
Finger strain measure f,,,. In the case of a homogeneous, isotropic, perfectly elastic
body, the specific potential energy @, referred to the initial volume, is a function of
three independent invariants of the first Cauchy measure [6], The same invariants can
be expressed also in terms of the components f, . of the second Finger strain measure,
This allows us to assume that @ = @ (f,,,). Then, the necessary relations can be ob-
tained starting from the expression [1]
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b
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Since @ = @ (f,,,), we have
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Applying the formula given in parentheses of (2, 2), we fmd the representation of the

Cauchy stress tensor
I

% = 2w fin g7 (3.3)
It is significant that the Cauchy stress tensor depends only on the tensor components
Jmn- A detailed discussion of the problem of the representation of the Cauchy stress ten-

sor in terms of the strain measures €., and fn can be found in [8],
Making use of the relations (3, 3),(1.3), (1.6),{3.2), we obtain the expression for the
rate of change of the Cauchy stress tensor at a fixed point in space
(’%L == F?o % (ijslest* + Ze:nsnsj - nmjeu*) (3.4)

e O, 62: axq
Bmfsf—éaf T pg 00, da da, (3.9)

The tensor B, ;,; determines the physical characteristics of the body in the deformation
process, At the initial instant, for the undistorted body, the tensor B st is equal to the
isotropic tensor (A and p are the Lamé elastic constants)

ijst = xﬁmjﬁsl -+ W (6ms6jt - (Smf(sjs) (3.6)

A characteristic singularity of Egs, (3,4) is the fact that only the components e, *
of the deformation tensor of the rate of change of the Lagrangean coordinates occur in
them while the components g * of the rotation tensor do not occur,

4, On the basis of Egs, (2,4), (2. 5), (3, 4) we derive a complete system of differential
equations and boundary conditions relative to the vector v;*.
Substituting (3, 4) into (2, 5) we make use of the Piola identity

Oz,
(2220

which is given in a somewhat different form in [1], Taking into account this identity,
the differential equations of the equilibrium acquire the following form:

a *
e (B'mjslest* + Zemsusj - nm]’ess*) =0 (4.2)
Bam

In order to convert the boundary conditions to the velocities v;* we make use of the
identity

3., a»
n; (vm 8—;— — 5m3 + 5y a—-) dS = (4.3)
6:: 6 * dv,,
n; Kvm Oa Ty + M5 —=— oa >dS°
m

which can be verified in a straightforward manner, Taking into account this identity and
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the expressions (3, 4), (2, 3), the stress boundary conditions (2, 5) obtain the form

n °<B € *+6—’§n-+u*a—“ﬂf>dsoz-d—(pd5) (4. 4)
m mjsitst 3am st s aas dt J .
At that part of the surface where the velocities v; of the material particles are given,
the rate of change p,* of the Lagrangean coordinates must be determined with the aid
of the formulas (1, 2),

The equations (4, 2) can be transformed also into the form

) * 6vs* * anmi
‘3_(1;: Bm]'stesl + %: T -+ Vs Ja, =0 (4. 5)

Equations (4, 2) and (4, 4) are the desired equations of the nonlinear elasticity theory
in terms of the rates of change of the Lagrangean coordinates, In this case, the velocities
v;* occur linearly in them, The nonlinearity is determined by the expression (3, 5) for
the tensor B,,js and by the components s, of the Piola stress tensor,

For the solution of concrete problems we can use, for example, the method of succes-
sive loads, Knowing the rate of change of the Lagrangean coordinates, we can determine
the displacement increments of the material particles, compute the tensor. 5, ;s from
(3. 5), find the stresses 7y, and then determine again the rates for the next loading stage,

In the process of successive loads it may turn out that for some magnitude of the load
the homogeneous boundary value problem for the velocities v;* will have a nontrivial
solution, This corresponds to the appearance of the characterisitc motion, i,e, to the
equilibrium bifurcation,

5, Inthe case of potential ("dead") surface loads, the right-hand side of Egs, (4, 4)
becomesequal to zero and the system of equations (4, 2) and (4, 4) obtains the form

a .
da_ (ijslest* -+ 26‘m33'[3]' - 3-‘:mjess*) =0 (5.1)
m

*

o " v, * 8nm].\
N ijstest + P T+ v a—a'/ =0 (5.2)
m s

In order to obtain the homogeneous boundary value problem of neutral equilibrium,
the bifurcation process will be considered as the appearance of the characteristic motion
of the medium, The velocities of this motion will be denoted also by v;*. On the part
of the boundary surface where the velocities of the material particles are given, the ve-
locity of the characteristic motion has to be considered equal to zero, The parameters
B,.jst and 7y for the prebifurcation state have to be determined, strictly speaking,
from the solutions of the initial nonlinear equations, If these parameters are known, then
the condition for the existence of a nontrivial solution of Egs, (5,1) and (5, 2) determines
the critical state of the deformable body,

Equations (5.1) and (5, 2) can be obtained as the Euler equation and the natural bound-
ary conditions of some variational problem, We proceed with the known functional [9]

1=\ s o 2 g
= — —=—2dTt
. a (890]- [ da)d (ﬁxm /8(1”) da; 80” 0 (5.3)
o
The condition for its stationary state leads to the equations of neutral equilibrium in the
Lagrangean representation
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] < 52D dv
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Substituting into (5, 3) the relation which follows from (1, 2)
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we obtain

I - S ( 2D dw, Fvx om\ o,
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To

Making use now of (3,1) and (3, 2), we arrive at the expression

« dv_* 8 N dv
J = g B.. _e. J__vl v T\ 20 dt,
) iimnrn T TG, T m* da, 301 (5. 9)

-
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The functional (5, 5) is mixed, the velocities v,,* and p;, connected by the relation

(1, 2), occur simultaneously in it, From the condition for the stationary state of the func-
tional (5, 5), we can obtain at once two versions of the boundary value problem for the
neutral equilibrium: one in the form of Egs, (5, 4) and the other one in the form of

Egs. (4, 5) and (5,2). In the case of the homogeneous initial deformed state, when

i (0ai8aj) = (), the functional (5, 5) is transformed to the form

o Ov*év
I= S(G]mne,,mel, i g e ) 4% (5.6)
To
G. 4 0O »2p O, axtaxp axq " _ o D du, O,
tmn = 4 5737 - Ja, oa, 0a, oa,’ 67, a; a;

Only the velocities v;* occur in the functional (5, 6),

6, The strict equations of neutral equilibrium (5, 1), (5, 2), obtained in terms of the
rates of change of the Lagrangean coordinates, contain the components of the rotation
tensor only in the boundary conditions, This opens the possibility of constructing appro-
ximate equations, in which the parameters of the precritical state of stress will not occur
in the differential equations of the boundary value problem,

It is interesting to observe that such equations for homogeneous initial stresses, with-
out any additional simplifying assumptions, are obtained by making use of the equation
of state [6] (&;, is the Almansi strain tensor)

0i; = hegdyy + 2pes; (8 = e4dy,) (6.1)
Indeed, making use of (1,5) from (8, 1), we obtain
s da,,

—aiti' = 6ts T 2M }'emn Pz aan 040 + (6.2)

aa da,, 8a Oan
2Hemn 61' d]: = }vfmnemnéu -+ 2P«€nm 6x 01‘

where f . — (da,, / dz,) (0a, / Oz) is Finger's first measure,
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In order to simplify the writing in the equations which will follow, let us agree that
no summation is to be performed with respect to two identical indices, one of which is
in parentheses, Then, if the initial state of stress is homogeneous and the directions of
the principal axes of the stress tensor coincide with the directions of the Cartesian co-
ordinate axes Z;, then we can write xj = MA(;@;. Here A; are the principal elongations,
Switching in (6, 2) to the variables z; and v;*' = v;* / A5 which corresponds to the
use of the concomitant system of coordinates, we obtain

ds.. Oy ¥’
¥ 1 v %!
Si = Mt 8y 4 2pe*, ey = T( ar, + o ax ) ©.3
The relations (6, 3) have the form of the usual Hooke's law in the linear theory of elas-
ticity and do not contain explicitly the parameters of the precritical state of stress, In
this case, Egs. (2.4) obtain the form of the Lamé equations in the linear theory of elas-

ticity 9 6v *7 o2 ¥’
(H—u)g( >+uaxa, =0 (6.4)
J

The corresponding homogeneous boundary conditions are given by (2, 5), (1,2), They
have the form v

6
n; (kess i 1 2pe™ — haog ax —+ K(m) 8 6(,)61]> =0 (6. 5)

where g; are the principal stresses, The equations (6, 4), (6. 5) form the boundary value
problem of bifurcation in which the parameters of the precritical state of stress (the prin-
cipal elongations and the principal stresses) occur only in the boundary conditions,

Let us clarify now under what simplifying assumptions we can obtain, for the boundary
value stability problem, the same Lamé equations in the case of an ideal elastic body,
For the sake of definiteness we take the specific potential energy in the form [1]

D = 1/27V112 + wl,, I, = 8:71n6m71v I, = g:ma:tm (6.6)

where ¢€;;° is the Green strain tensor, connected with the first Cauchy measure ¢;;° =
(0, / da;) (0x,, / da;) by the relation ¢,,° = (¢;;° — 8;;) / 2. Making use of the
equality of the invariants of the tensors ¢, ;7 and fiin from (3, 3) we obtain the equation

of state P
Gij = _p_°- [()“Il - I"t) fij + P“fimfmfl (6' 7)

where we take into account that

Ilz(fmn 6mn_—3)/2 (6. 8)

Applying (1, 3),(1.6) and the expression 01 / 0f = ¢4 €,* which follows from (8, 8),
we obtain

=]

03, . :1:1. 817- o *
ot €5s*0i; 1 = p 8a da, Fa— M5 % s*8p + 2pchisesn + (6.9)

2}L€msc + 2 (}\.[1 — l-l) emn]

This equation can be written in the form (3. 4), where now
ox;

ijst = [}"cstoémn +u (C?ns(snt -+ c%lléns)] W]'
n

We introduce the energy stress tensor o;; = ¢ /de; ;7 [61which, for the considered form
(6. 6) of the potential energy, is
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o o
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Then (6, 9) can be written in the form

ij p axi 81‘/~ P i * o
_at_' =55 “\.@SS (Smn - 2”€mn ‘[‘ 2677156* j’ (6‘10)
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We consider now the case when the critical stresses at the loss of stability are consider-
ably smaller than the elasticity moduli and the critical strains are much smaller than
unity, Such an assumption holds, for example, for metal building structures, Then the
first two terms which occur in brackets in (6,10), with the factors A, W, are substantially
greater than the remaining terms which determine the deformation anisotropy of the
elastic body, In this case, in the expression (6, 10) it is admissible to neglect those terms
which are the products of the components of the initial stresses and strains by the com-
ponents of the strain tensor e, *, which is equivalent to the disregard of the deformation
anisotropy of the elastic body, In this case the expression (6.10) becomes

0_51._]- _p 0z, z; Do * N
at 'P_o %;ga—; ( €ss 6mn + Z}J-emn) (6.11)

The equilibrium equations (2, 5), taking into account the identity (4, 1), obtain the form

a dx.
5 | Aot + 2net) 5] = 0 (6.12)

7
If, furthermore, the initial rotarions are also small, then Jz; / da, =~ 6,; and instead
of (6,12) the following equations are satisfied:

a
('T(kess*émn + 2He$n) == () (6. 13)

The corresponding boundary conditions follow from (2, 3),(2. 5), (4. 3)

da

nmo <}"ess*6m’n + 2“6719171’— e?ren Tgn -+ (1)?513 gt Us* anmn) =0 (6.14)
38
Here we have made use also of the equality 9v,,* / da, = eps* — @4, *

The Piola tensor of precritical stresses in (6, 14) has to be considered equal to the stress
tensor defined with the aid of the linear elasticity theory, because the initial strains and
rotations are assumed to be small, With the same degree of accuracy which has been
used for the passage from (6.10) to (6.11), one can neglect the terms e,, *m;, in the

equations (6, 14), Then the boundary conditions become

aﬂ: T )
nmo (Kess*amn ’4" Zp'e:m + w;s Tsn ’{‘ 175* 8:1 ) =0 (6. 15)

8

Equations (6, 13) can be written in the form of the Lame equations

P Oz7m* ()‘Jv”’*
(4w a, < Oa_ ) e dada, =0 (6.16)

Thus, for the approximate solution of the stability problems of weakly deformable elas-
tic bodies, we can make use of the boundary value problem (6, 15), (6, 16), with a para-
meter in the boundary conditions, For its derivation we have made assumptions on the
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possibility of disregarding the precritical strains and rotations, which corresponds to such
a formulation of the stability problem where in the precritical state the elastic body is
considered to be under tension without being deformed,

The boundary value problem described by Eqgs, (6, 14), (6. 15) is similar to the corres-
ponding houndary value problem in Leibenzon's method [3), If we digress from the in-
terpretation of the unknown functions which occur in the equations, then these problems
differ only in some unimportant terms in the boundary conditions, Previously, one of the
authors of the present paper has determined the rightfulness of the application of Leib-
enzon's method to the approximation solution of the stability problems of weakly defor-
mable isotropic elastic bodies (*).

The equations (6, 15), (6, 16) are not the natural boundary conditions and the Euler
equations of some functional similar to (5, 6), However, in the opinion of the authors,
for the determination of the first smallest eigenvalue of the boundary value problem,
this circumstance is immaterial, At the same time, the application of the obtained
approximate equations can significantly facilitate the solution of concrete problems,
especially in those cases when simple solutions of the homogeneous Lamé equations are
known,

REFERENCES

1, Novozhilov, V,V,, Foundations of the Nonlinear Theory of Elasticity, (English
translation), Rochester, N,Y,, Graylock Press, 1953,

2. Guz', A_N,, The Stability of Three-dimensional Deformable Bodies, Kiev, "Na-
ukova Dumka™, 1971,

3, Leibenzon, L.S,, Onthe Application of Harmonic Functions to the Stability
Problem of Spherical and Cylindrical Shells, Collected Works, Vol,1, Moscow,
Akad, Nauk SSSR, 1951,

4, Ishlinskii, A, Iu,, The investigation of problems on the equilibrium stability
of elastic bodies from the point of view of the mathematical theory of elasticity,
Ukrainsk, Matem, Zh, , Vol,6, N2, 1954,

5. Gol'denblat,I,I,, Nonlinear Problems of the Theory of Elasticity, Moscow,
"Nauka”, 1969,

6. Lur'e, A,I,, Theory of Elasticity, Moscow, "Nauka", 1970,

7. Biot, M, A,, Mechanics of incremental deformations, N,Y,, Wiley, 1965,

8, Truesdell, C, and Noll, W,, The nonlinear field theories of mechanics,
New York - Berlin, Springer, 1965,

9, Prager, W,, Introduction to Mechanics of Continua, Boston, Ginn and Co, , 1961,

Translated by E, D,

*) L.I,Balabukh, The analysis of L.S, Leibenzon's method for the investigation of the
stability of elastic bodies, The Fourth All-Union Conference on Stability Problems in
Structural Mechanics, Abstracts of reports, Moscow, 1972,



